
The “twelve” most important Unix commands

Carl Mason
cmason@berkeley.edu

rev 1.33 Fall 2018

Contents

1 Introduction 1

2 Terminal windows 2

3 The Filesystem 3

4 The command interpreter (or shell) 4
4.1 Essential stuff . 5

4.1.1 Killing stuff . 5
4.2 Efficient stuff . 6

5 The 12 most important Unix commands 8

6 Special and “meta” characters 13

1 Introduction

Although Unix has a point and click graphic user interface, called X11, which
works just like those other operating systems, Unix is at heart a command
line operating system. So while it is possible in many cases to do what you
want via pointing and clicking, using the command line and other text based
tools will make you happier and much more efficient... eventually.

To operate with the command line, you will need to know the 12 most
important Unix commands described in Section 5. To enjoy it you will also
need to know a few tricks that are also covered in this document.

You don’t need to know much about Unix in order to start doing Science,
but it would not hurt to learn more. In your copious free time, check out

1

some of the Unix primers on the web. Ask google something like “Unix
beginner” to find more resources than you could possibly want.

Note that since the Mac OS is simply a Unix application, nearly ev-
erything in this document works the same way in a mac. On a mac, the
terminal window application is under Applications/Utilities.

2 Terminal windows

In order to use the command line or shell, you must open a terminal
window (also known an xterm window). There are several very similar
terminal window applications which for our purpose are completely inter-
changeable. roxterm and mate-terminal are two that you will find under
[Application]→[System Tools].

A terminal window should start out looking something like Figure 1.
Notice that the window features a menu bar – as you’ll discover, by reading
the rest of this sentence, the menu bar is only useful when you want to
fiddle with the terminal windows many many configuration options. This is
something you will only want to do when you are actively trying to avoid
doing something useful – so your best option is to use the RIGHT to reveal
a menu that will allow you to NOT “Show Menu Bar”. When it’s time to
study for prelims, you can expose the menu bar again and fiddle with fonts
and background colors and chirps and beeps and whatever.

Aside from the title bar at the top, the only words in the terminal win-
dow should be the Unix prompt. The purpose of the Unix prompt is
to indicate that the shell is ready to accept commands. It also contains
useful information. In Figure 1, the prompt is is [carlm@twins ~]$, in-
dicating the user, carlm, the machine, twins and the current directory
which is indicated by the ~. In this and other documents, the Unix prompt
will look like this: @:> . In the real Unix prompt, the symbol ~ is a
special character whose meaning is ”home directory”. ~/Dissertation

means a file or directory called ”Dissertation” which is located within your
home directory. In my case this would be /hdir/0/carlm/Dissertation.
~wachter/Brilliant/insight translates to a file (or possibly a directory)
called insight in a directory1 called Brilliant in Ken Wachter’s home
directory, or /hdir/0/wachter/Brilliant/insight. More about home di-
rectories can be found in Section 2.

Although you are too young now for this to matter, someday, if you are
lucky the default font size in the terminal window and elsewhere will become

1directories are also called ”folders”

2

Figure 1: terminal window

too small to read –even through the bottom of you thick progressive lenses.
To prolong your career at that point, a useful trick with is the CTRL

+ SHIFT + + to increase and CTR + - to decrease the size of the
typeface. This also works in browsers and many other applications. Macs
and windows machines have something similar.

3 The Filesystem

Whenever you login to a machine on the Demography network, your initial
present working directory – the location within the filesystem in which
applications will begin looking for the files that you specify – is your home
directory. Every user has exactly one home directory.

In a multiuser system such as the Demography Lab, your home direc-
tory is one of a huge number of interconnected directories that form a single
unified filesystem. The magic of the filesystem is that even though the var-
ious files and directories of which it is composed are “physically”/footnoteor
electromagnetically present on various different machines all over the net-
work, to us users, the whole thing appears to be one single thing and that
thing looks and feels the same no matter which Demography Lab machine
we happen to be using at the moment.

An upside down tree makes a pretty good metaphor for the filesystem.

3

Such a “tree” is shown in Figure 2. At the top of the figure is a directory
called “/” which is the “root” of the filesystem. Every file and directory in
the filesystem can be uniquely specified by a filepath that begins with root.
For example, the file that holds my correspondence with my mother might
be /hdir/0/carlm/mail/mom.

As you can see in Figure 2 home directories all live in a directory called
/hdir/0. Although it is just one of many directories within this giant upside
down tree of a filesystem, your home directory is a special place that you
will come to know and love and where you will do your very best work. It is
the part of the filesystem that you own and the “place” where you will find
yourself when you first login.

Because the entire filesystem looks the same to all users all the time,
it is easy to share data with your colleagues. This is good thing because
humanity benefits when scientists collaborate. But unfortunately scientists
can occasionally turn out to be creeps so sharing a filesystem is a little scary
as well.

The “solution” to the creep problem is to not keep sensitive information
on Demography computers. You have already promised not to keep data
covered by SB 13862. It goes without saying that files that can tie you
to illegal activities are also a no-no. There are however, a few files that
belong on the network and yet where privacy is an issue. For those files,
managing who may read and/or change them requires understanding the
mode and ownership of files. Each file and directory has an owner and the
owner can determine who is allowed to read, write and/or execute each file.
See the chmod command below for how to change the various file modes or
permissions. The chmod command is described in 6.

4 The command interpreter (or shell)

The command interpreter, or shell is the program that runs in each terminal
window. It waits for you to type something at the Unix prompt, @:> ,
and then does what it thinks you meant. The shell we use here is called
bash (pronounced “bash”). Bash is one of several modified versions of the
original sh (pronounced “s-h”) shell.

The most important thing that the shell does for you is to let you give
commands to the computer. These include the 12 most important Unix
commands (Section 5) as well as commands to launch applications like R,

2See the statement of compliance that you signed before we gave you an account

4

Figure 2: The Demography Lab filesystem

Stata, word processors or spreadsheets3. The shell does several other things
for you some are essential, some enhance efficiency and others are just cool.

4.1 Essential stuff

Among the essential features of the shell is a mechanism to communicate
with running programs that are not expecting user input or have run amok.
This is not all that common, but when it happens you need to be able to
get the program’s attention and tell it – generally to drop dead.

4.1.1 Killing stuff

To kill a program that happens to be running in the foreground of a terminal
window – e.g. you launched it from the command line and the terminal
window that you launched from is not showing a prompt – you can simply
hit ctrl + c . This mostly works, as does closing the terminal window.

3It is of course possible to launch most applications via the menu system or by clicking
on corresponding data files in the file manager, but the command line is often faster

5

A more general approach is useful however because often applications
are started via menus or are for other reasons running in the background (in-
dependent of a terminal window). To kill such a program requires knowing
its process id or PID.

Your friend for finding a PID is ps

@:> ps -ux

produces a list of all of your running processes :

carlm@immigrant:~$ ps -ux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

carlm 568 0.0 0.0 35280 3112 pts/9 R+ 12:49 0:00 ps -ux

carlm 27216 0.0 0.0 43192 5156 ? Ss 08:39 0:00 /lib/systemd/systemd --user

carlm 27221 0.0 0.0 77800 2288 ? S 08:39 0:00 (sd-pam)

carlm 27262 0.0 0.0 105468 5828 ? R 08:39 0:07 sshd: carlm@pts/9

carlm 27263 0.0 0.0 4504 752 pts/9 Ss 08:39 0:00 /bin/sh -c /bin/bash

carlm 27269 0.0 0.0 21448 6328 pts/9 S 08:40 0:00 /bin/bash

carlm 27528 0.0 0.0 42608 2308 pts/9 S 08:42 0:00 dbus-launch --autolaunch a8f1d898ba4dba1bb

carlm 27529 0.0 0.0 40824 3244 ? Ss 08:42 0:00 /usr/bin/dbus-daemon --fork --print-pid 5

carlm 27531 0.0 0.0 59216 5488 ? S 08:42 0:00 /usr/lib/x86_64-linux-gnu/gconf/gconfd-2

carlm 32356 0.7 0.1 571456 67064 pts/9 Sl 12:25 0:10 emacs 12important.tex

carlm 32511 0.0 0.0 4504 704 ? Ss 12:27 0:00 /bin/sh -c okular --unique --page 2 12impo

carlm 32512 0.1 0.1 605712 91464 ? Sl 12:27 0:01 okular --unique --page 2 12important.pdf

carlm 32521 0.0 0.0 178056 16172 ? Ss 12:27 0:00 kdeinit4: kdeinit4 Running...

carlm 32524 0.0 0.0 200472 17968 ? S 12:27 0:00 kdeinit4: klauncher [kdeinit] --fd=8

carlm 32527 0.0 0.0 272180 27192 ? S 12:27 0:00 kdeinit4: kded4 [kdeinit]

carlm 32553 0.0 0.0 542152 24316 ? Sl 12:27 0:00 /usr/bin/kactivitymanagerd start-daemon

carlm@immigrant:~$

Many of the columns above are unlikely to interest you, but there two
that will: The “COMMAND” column shows the command that launched
the process “emacs 12important.tex” in the 10th row is the entry associated
with the emacs editor program which I am using to edit this file right now.

If I wanted to kill that program and thereby lose many minutes of editing
effort, I could type:

@:> kill 32356

in any shell window. 32356 comes from the column called “PID”. The
kill command with no argument other than a PID is a polite sort of kill –
much like pulling down the “file” menu and selecting “exit” in many appli-
cations. When that does not work, kill -9 PID is much more aggressive.
It causes program to stop without saving or cleaning up in general.

4.2 Efficient stuff

To make you more efficient, the shell offers three particularly nice features:
“history”, “ tab completion” and “scripting”.

6

history The history feature allows you to recall and edit any command
that you have previously issued. To make the previous command appear at
the @:> hit ctrl + p or equivalently the up arrow key. To see even
more previous stuff type ctrl + p more times. ctrl + n or equiva-
lently the down arrow will make the next command appear – obviously,
this makes no sense unless you have typed ctrl + p at least once.

You can operate on a recalled command using several standard emacs
editing keys:

• ctrl + a To go to the beginning of the current line

• ctrl + e To go to the end of the current line

• ctrl + f To go forward one character

• ctrl + b To go backward one character

You can also use the left arrow and right arrow to move about within
a recalled line. The delete and backspace keys do what you would
expect.

TAB completion If you hit the tab key anytime while constructing
a command, the shell will do it’s best to figure out what you are planning to
type next. If you are typing a command it will try to find a command that
starts out with what you have already typed. If you are typing the name of
a file the shell will try to complete if for you. If what you have typed does
not uniquely determine a command or filename, the shell will beep at you
and provide a list of possible completions. You can then type a few more
characters and hit tab again.

scripting Whenever you find yourself typing the same command several
times, it’s time to consider scripting. A shell script is just a file of commands
that you could have entered at the keyboard, but typed into a file instead.
You can then set the file’s execute bit (See Most Important Command num-
ber 6) and execute that file – perhaps now, perhaps later. You will need to
use an editor such as emacs to create that shell script. Knowing how to use
emacs can save you lots of time and hair loss – particularly if many of the
commands you are typing are quite similar.

Scripts are also very useful for people who like the idea of being able to
reproduce results.

7

cool stuff The shell is also responsible for displaying the results of the ls

command (See 1) in lots of colors.
glob expressions are combinations of letters and special characters

that the shell interprets in clever ways (Glob is a very simplified version of
Regular Expressions the concept is so similar that I will accidentally use the
term Regular Expression when I mean glob expression). In the shell we use
glob expressions to specify lists of files or directories on which a command
should operate. A typical use would be to delete from your current working
directory all of the .pdf files whose name begins with a vowel:

@:> rm [AEIOUaeiou]*.pdf

The letters between the [square brackets] form a list of which any in-
cluded element will be considered a “match” because nothing proceeds the
[] in order for a file to match, it must begin with one of the letters in the
square brackets. the ’*’ means zero of more of any character. Glob expres-
sions come up in several of the “12” important commands.

5 The 12 most important Unix commands

Below is a list of the 12 most important Unix commands. They are simple
enough to be easily memorized by anyone who can keep the names of all
twelve months in his head.

For the most part, these commands are for logging on and off; for print-
ing; and for moving files and directories around. Many of these commands
functions can be done using a file manager or under emacs, but knowing
how to do them from the command line, makes you more efficient, reduces
errors and opens the possibility of automating tasks with shell scripts.

NOTE the <angle brackets> indicate that a command ar-
gument is optional you do not type the <>’s it’s just a ty-
pographical convention

1. ls <-ltr> <glob expression> The “list file” command, ls is used
–not surprisingly– to list the names and pertinent information about
some or all of the files in a particular directory. The most common and
useful option is -l that’s a lower case L not a one. It reveals the most
interesting properties of your files. Adding tr causes ls to present it
results sorted by time in reverse order.

8

@:> ls -ltr directory1

produces a list of files sorted so that the most recent ones are at the
bottom of the list.

See 4.2 for a description of glob expressions.

2. mkdir <-p> new-directory-name The “make directory” command
is used to create a new sub-directory of the current working direc-
tory. The -p argument causes mkdir to create “parent” directories as
needed. In other words,

@:> mkdir -p first/second/third

would create a a directory called third which would be a subdirectory
of second which in turn would be a subdirectory of first. The -p

argument instructs mkdir to create second and/or first if they do
not already exist.

3. cd <directory-name> The “change directory” command makes an-
other directory your present working directory. With no argument, it
”moves you” to your home directory. To move one directory ”higher”
use ”..” (two dots) in place of the directory’s name. The one and only
parent directory of the current directory is always addressable as ”..”.

4. cp <-R> source target

The copy command, cp is used to copy files or a directory full of files.

• To copy a file you specify the name of an existing file as the
“source” and you specify a legal filename as the “target”.

• If you want the new copy of the file to be in a different direc-
tory, then you can specify a path to an existing directory as the
“target”.

• To copy a directory full of files you use the -R argument. As is
often the case, the “-R” stands for “recursive”.

@:> cp -R directory1 directory2

The above command will copy directory1 and all the files and
subdirectories contained therein into directory2. If directory2
doesn’t exist, it will be created, if it does exist, then this command
will create a subdirectory of directory2 with the same name as
directory1 and containing copies of all of the files and directories
in directory1.

9

5. rm file-name or <regular expression> The rm command is used
to remove, or erase files. Here again, regular expressions can be very
useful – and quite dangerous.

rm is often aliased4 to rm -i, so that it asks you to verify that you
really want to remove a file. If you get tired of this safety feature, use
\rm instead.

Note: rm will accept a regular expression as an argument. The
simplest regular expression is “*” which stands for everything in the
present working directory. So be careful.

To remove an entire directory and and all the files and subdirectories
in it, you use the -r argument and the leading back slash, “̈:

@:> -rf directory1

the above command will remove directory1 and all of the files and
subdirectories within it, the -f argument ensures that rm will not ask
for permission with each file. -rf * is a VERY dangerous command.
If you find yourself typing it make sure you are not drunk.

Heads up: the rm command really and truly removes a file.
rm cannot be undone. This is different from the way the
file manager moves stuff to the “trash”.

6. chmod<aogu +/- rwx> filename-or-directory The “change mode” com-
mand is used to modify the permissions (or mode) of a file or directory.
Permissions are the characteristic of a file or directory which determine
who has what type of access to it. All files and all directories have per-
missions, only the owner of the file/ directory is permitted to change
modes.

The first argument is a string of characters that grant (+) or revoke
(-) permission to read(r) write(w) or execute (x) the file or directory.
The letters aogu indicate who is to receive or lose the given permis-
sion. u=user, g=group, o=other, and a=all. Thus to revoke write
permission to all users you would type:

4as you might expect, “alias” is a shell feature that allows you to create new names
for commands. It is possible and common to use this feature so that when you type rm

the shell substitutes rm -i. The -i argument causes rm to ask for verification before it
removes a file

10

chmod a-w filename

To grant permission to yourself and the group to write and execute a
file you would type:

chmod ug+wx filename

7. ln <-s> real-file-name artificial-file-name The “link” com-
mand creates an alternative name for an existing file or directory.
This is particularly useful when using data sets that you keep in
/data/commons (as you should). Rather than typing /data/commons/userid/datafile
to reference your data, a symlink would allow you to type something
much shorter.

ln -s /data/commons/userid DATA

would create a link in your current directory called “DATA”. But
DATA is really just a secret back way to /data/commons/userid. typ-
ing ls DATA for example is the equivalent of typing ls /data/commons/userid.

It would be a good idea to create the above link right now. Use the
mkdir to create a new directory in /data/commons called your userid.
Then create a link in your home directory so that you can start storing
and accessing huge data sets right away.

8. mv file-name new-file-name The “move” command changes the name
or location within the filesystem of a file or a directory.

9. less file-name Variant of the more command – less is used to scroll
through a file on the screen. While displaying a file, enter scrolls
one additional line; space scrolls one additional screen full; b

scrolls backwards, q quits, /word searches forward for “word”,

?word searches backward for “word”.

10. gtklp filename launches a gui application which allows you to print
filename to any Demography of Sociology printer command prints
a file to the named printer. Most of the time we print from with
applications so this command is not so frequently used anymore. Also
since it launches a gui application, it is not strictly speaking a Linux
command. For purists and dinosaurs the Linux command in lpr.

Demography and Sociology Department Printers

11

Printer Location Type

age Basement Lab
HP Laserjet 4015 postscript
monochrom duplex 1200dpi

region 2224 2nd floor HP 4100n postscript 600dpi

cohort 2232 2nd floor HP 4200n postscript 600dpi

reproduction 2232 1st floor
Canon Image Runner Ad-
vanced C5235

Barrows477 Rm 477 Barrows Xerox phaser

Barrows483 Rm 483 Barrows Xerox phaser

11. pwd “present working directory” tells you where you are, that is, it
tells you which directory the shell thinks is the current directory.

12. du <directory> The “disk use” command is designed to tell you how
much disk space each directory is consuming. It’s main use, however,
is simply to display the directory structure.

12. man -k key-word — command-name The ”manual” command is used
to display manual pages on your screen. To say that man pages are
not particularly easy to read is is an understatement of almost biblical
magnitude. But they are very handy for refreshing your memory or
searching for something very specialized.

The man program puts the contents of the man page in a “less” pro-
cess, see item 9 for a description of how to navigate in less.

In this century a very good source of information on Unix is google.
The web knows all about Unix and while there are lots of different
distributions, command line tools in particular are nearly identical in
all distributions including Solaris, Hpux, every flavor Linux, BSD, and
even Apple’s OS X (which by the way is Unix too).

12. ssh <-l userid> hostname “ssh” stands for “secure shell” it is really
a separate application but it behaves like a shell command and is really
useful so it is included here. If you type ssh keyfitz at the unix
prompt, (and then your password when prompted) a remote shell will
open on an entirely different machine from the one you are sitting in
front of.

The new remote shell on keyfitz will have a prompt like: [userid@keyfitz ~]$

indicating that the commands that you type will be executed the ma-
chine keyfitz which happens to live in the server room in 2224 Pied-
mont. Happily the new shell will see the same filesystem and under-
stand the same Unix commands.

12

The reason for ssh’ing to keyfitz is that it is much more powerful than
immigrant (which power the workstations) or quigley which powers
noMachine. Also, keyfitz does not run any desktops so other users will
be minimally inconvenienced by your humongous multi hour job.

NOTE: when using ssh or ssh-like programs on machines outside of
the Demography Lab, you will need to specify both your Demography
Lab userid as in ssh carlm@nmx.demog.berkeley.edu5. Also – ssh
works from a mac but with windows you need some other application.

NOTE even more urgently: Since we started running noMachine
ssh’ing from outside of the department instantly became anachronistic.
noMachine provides a generally better way of connecting to the De-
mography network if your goal is to do science. http://lab.demog.

berkeley.edu/LabWiki is the place to go to find out about noMachine
and much else.

12. exit or logout closes the current Unix window, and logs you off – if
the current window is the console window.

6 Special and “meta” characters

In addition to the key combinations and commands discussed, Unix also
supports several characters with special meanings to the shell. Below is a
list some of the more common ones:

* The asterisk or “star” character is used in glob expressions (See item 4.2).
When the shell sees a * by itself as in @:> ls * it replaces * with a
list of all the files and subdirectories in the current directory. @:>
ls * tells the shell to run the ls command on each and every file and
subdirectory in the current directory. So where @:> ls will show files
and subdirectories @:> ls * will list the files that live in subdirectories
of the current directory as well.

& The ampersand tells the shell to run the process in the “background”.
When a process is launched in the background, the xterm (See 2)
immediately returns with a prompt. When you run a process in the
foreground (the usual case) the prompt comes back only when the
process exits.

5surprise - from outside the department you will probably end up on refugee rather
than quigley if you specify the host as @demog.berkeley.edu

13

http://lab.demog.berkeley.edu/LabWiki
http://lab.demog.berkeley.edu/LabWiki

NOTE it only makes sense to run programs in the background if
the program spawns a new window. So emacs, Stata, userfirefox, or
libreoffice are all fine running in the background. The 12 most
important Unix commands are not. They all write their responses to
the terminal window. If you put them in the background they cannot
do this.

REALLY important: R should not be run with the & for the same
reason: it runs in the window from which it was launched. This will
all make sense after the first week or two of 213.

To bring a backgrounded program to the foreground, type

@:> fg <%n>

where %n is the percent sign followed by a number indicating which
backgrounded process you want to foreground. You only need to enter
the %n if you have more than one process running in the background.
Type @:> jobs

to get a list of backgrounded processes associated with the current
xterm.

. (dot) The dot is interpreted by the shell to mean the current working
directory. So expressions like like ./insight.py the file insight.py

in the current directory.It’s generally not necessary if your are passing
a filepath to a Linux command for example

@:> cat insight.py

and

@:> cat ./insight.py

will both print the contents of the same file to the screen.

Where the dot is important is when insght.py is executable – perhaps
a python program that you just finished writing. For security reasons,
the shell will only look for executable files in a prespecified set of
locations in the filesystem. Even though insight.py is sitting right
there in your current directory, the if you ask the shell to execute it,
it will not be found. Unless you refer to it as ./insight.py

Watch the flyspecks: In addition to representing the current work-
ing directory, “.” also has the effect of making things invisible. File
and directory names that begin with “.” are traditionally configuration

14

files – stuff that you don’t generally want showing up everytime you
ls. Consequenlty, .insight.py refers to something entirely different
from ./insight.py.

..(two dots) are interpreted as the parent of the current directory.

∼ the tilde character is interpreted by the shell to mean “home directory” by
itself, it means your home directory, if it is followed by a username as
in ∼carlm it refers to that user’s home directory. The ∼ can be used in
complicated pathnames such as∼carlm/public html/213F97/welcome.html.
For it to make sense, the ∼ must be the first character (and perhaps
the only character) of a pathname.

| The “pipe” is used to send the standard output of one process into the
standard input of another. For example, if you wanted to know the
number of lines in every data file in the current directory you might
type: @:> ls *.data | wc -l . The ls *.data produces a list of
files in the current directory that end in “.data”, the | then feeds this
list to the word count command “wc”. The -l argument tells wc to
only report the number of lines. This example assumes that you have
named all of your data files somethingorother.data.

> The right angle bracket (or greater than sign) is used to send the out-
put of a process into a file. @:> ls > file.list would produce
a file called file.list containing (surprise) a list of files. Use dou-
ble angle brackets to append a process’s output to an existing file.
@:> ls ∼/public html >> file.list

would add the names of the file’s in your public html directory.

15

	Introduction
	Terminal windows
	The Filesystem
	The command interpreter (or shell)
	Essential stuff
	Killing stuff

	Efficient stuff

	The 12 most important Unix commands
	Special and ``meta'' characters

